Mar. 1929 AMERICAN PHARMACEUTICAL ASSOCIATION

SODIUM AND POTASSIUM BALANCES, WHEN USED AS CITRATES IN ACIDOTIC AND RACHITIC CONDITIONS IN RATS.*

BY JOHN H. SPEER, VERSA V. COLE AND FREDERICK W. HEYL.

In the two preceding papers (1), (2) from this laboratory, we reported on the utilization of calcium lactate in diets which were alkalized with sodium citrate and with sodium and potassium citrates, using both mature rats in a state of mineral drain, and young rats recovering from experimental rickets. In both cases it was clearly shown that alkalization with citrates had a favorable influence on the alkaline reserve, with respect to calcium, phosphorus and magnesium.

Incidentally we have determined the sodium and potassium balances on those experiments and these are here reported. For the sake of reference and clarity the other base balances are included in the tables. Of course these experiments were not especially designed to establish any particular points in connection with sodium and potassium metabolism, but they have, nevertheless, a certain interest because it is important to know what advantages or disadvantages might result from the use of alkaline citrates in such moderate quantities, and in such proportions as they are frequently employed therapeutically. In almost all nutrition experiments relating to the Na:K ratio as, for example, Richards, Godden and Husband (3), there is the tendency to use very large quantities of potassium as citrate, or chloride, so that the quantities are entirely out of line with therapeutic dosage. Nevertheless one draws the conclusion that potassium in excess has a somewhat detrimental effect on the easy adjustment of the tissues to an increased alkalinity, especially of Also phosphorus balance is not favorably influenced by excessive potascalcium. sium.

As stated above, these experiments were not arranged for definite conclusions with respect to sodium and potassium yet they permit a few general observations which will probably be found correct in more elaborate tests. The summative effects of balanced alkaline solutions in metabolic experiments are, of course, the combined result of a very large number of variables, so many in fact that the practical conclusion as to the best ratios to use in practice will be decided by teleological rather than laboratory methods. Yet laboratory results have a certain confirmatory value on conclusions thus obtained. In the work of Ringer, Macallum, Clarke and others on the effects of electrolytes on tissues, laboratory results are largely confirmatory of such practical conclusions.

EXPERIMENTAL.

(1) Comparison of the retentions obtained using (a) sodium citrate plus calcium lactate, and (b) sodium and potassium citrate and calcium lactate on highly acidotic (potassium depleted) mature rats.

Since the work on mature rats reported in the first paper had been completed before we decided to determine the sodium and potassium balances, it was in part repeated in order that this added data might be secured. The rats were treated in all respects as previously described, save that sodium was substituted for potassium (3), mol for mol, in the salt mixture in the basal diet, and lactose added to compensate for the resulting decrease in weight.

^{*} Scientific Section, A. PH. A., Portland meeting, 1928.

	Acidity. Cc. 0.1 N <i>Acid.</i> +135 +135 +122 +122 +83	- 201 - 217 - 179 - 149 - 113		Na N	
TABLE I.—FORE PERIOD—SIX DATS.	$\begin{array}{c} \text{Mg} \\ \text{balance} \\ Mg. \\ Mg. \\ 1 - 1 - 0.7 \\ 1 - 2.9 \\ 3.2 \\ 3.2 \end{array}$	++++1 003:08 003:09 003:09	even-Day Perlods.	Acidity. No. 0.1 No. 0.1 No. 6.1 No. 0.1 No. 0	
	Mg output. <i>Mg</i> . 23.9 24.8 24.0 24.0 18.6 15.1	17.6 15.1 14.7 114.9 11.0		base <th< td=""><td></td></th<>	
	Mg Mg. Mg. 25:5 23:5 23:1 15:7 11:9	18.9 20.1 18.5 138.8 10.5 10.5		04 Mg Mg Mg Mg Mg 15718 128 128 9 15718 128 128 128 128 128 128 128 128 128 1	
	P balance. <i>Mg.</i> - 15 - 16 - 38 - 20	+ + 4,8,1,1,1,2,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4		Make Make Make Make Make Make Make 194.88 255.854.88 255.854.88 255.855.855.855.855.855.855.855.855.855.	
	P Mg. 218 205 205 171 171	170 153 144 126 114		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	P Intake. <i>Mg.</i> 214 204 133 133 100	ays. 166 179 145 149 121 93		PRRIODS. PRRIODS. Provents. 153 153 153 153 153 153 150 150 150 150 150 150 150 150	
	Ca balance. <i>M g.</i> 1 50 1 54 1 54 1 54 1 54 1 54 1 54 1 54 1 54	Six_D 13 + 13 + 19 16 16		вуву- DAY Ref. inter- 242. 242. 242. 242. 235. 236. 226.	242 242 242 191
	Ca Mg. 588 548 500 540 500 540 500 540 500 540 500 540 500 540 500 50	1 Period 43 43 111 43 11 11 43 11 11 11 11 11 11 11 11 11 11 11 11 11		MX FOR Simple Caracter M_{12} Caracter M_{12	
	intake Mg. 4558-1888	다 31 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 30		II. – D. Mg. – D. Mg. – D. 127 127 127 127 127 127 127 127 127 127	
	K balance. <i>ME</i> . 1 92 1 93 1 33 61	1 33 33 33 33 33 33 33 33 33 33 33 33 33	Ē	TABLE Marke. Marke. Marke. 226 226 228 228 228 332 332 332 332 332 332 332	
	K Mg. 65 129 129 129 79	655 652 87 87 87 87 87 87 87 87 87 87 87 87 87		$\begin{array}{c c} M_{E} \\ M_{E}$	
	K Mg. 37 37 37 33 37 33 37 37 37 37 37 37 37	26 891 891 23 745 745 466 466 m lactat		Mgut. Mgut. Mgut. Mgut. 1146. 1146. 1146. 1158. 1157. 1158. 1157.	
	Na balance. <i>Mg</i> . - 61 - 96 - 23 - 24	+ 178 + 188 + 148 + 65 + 29 + 37 A calciu		Intark K 102 102 102 102 102 102 102 102	
	Na M. 8. 284 258 275 275 210 173 118	695 695 606 606 601 156 156 ctrate F		balance. balance. Mar.c. Mar.c. balance.	
	Na intake. 197 179 179 122 92	873 873 369 753 308 630 193 193 193		out Dut. Mg. U. 366 0.366 1.062 554 554 556 556 560 566 560 566 626 626 626 626 742 742 626 742 742 626 742 742 742 742 742 742 742 742 742 742	
	Food Caten. 73 73 73 73 73 73 73 73 73 73 73 73 73	63 67 55 55 56 56 35 35 35 35 35 35 35 35 35 35 35 35 35	keceived hi keceived m	$\begin{array}{c c} Na \\ Ml ske \\ Ml ske \\ Ml ske \\ Ml ske \\ 1.168 \\ 1.158 \\ 551 \\ 551 \\ 551 \\ 551 \\ 541 \\ $	
	Rat No. 47 55 16 16 92 92	471 53 1571 1571 921 15		Food Gar. 772 772 772 772 772 81 81 81 81 81 81 81 82 82 94 94 92 92 92 92 92 92 92 92 92 92 92 92 92	

In the experimental period, sodium citrate was added to the diet of half the rats at a level of 5 Gm. Na₃C₆H₆O₇.2H₂O per 100 Gm. food, while the other half received 1.04 Gm. Na₃C₆H₆O₇2 H₂O + 4.36 Gm. K₃C₆H₆O₇.H₂O making the total alkalinity the same in each case. Four mg. calcium lactate per day was added in the usual manner. The Na and K analysis of the diets are:

	Basal diet.	Na citrate.	Na and K citrate.
Na	0.271%	1.37%	0.58%
к	0.051	0.041	1.33
	Results are shown in Table I.		

CONCLUSIONS.

(1) Addition of sodium and calcium does not conserve potassium, the balance of which is the same in both the fore and experimental periods.

(2) Addition of sodium and calcium favors calcium retention.

(3) Addition of sodium, potassium and calcium favored potassium retention, lowering to some extent sodium retention; perhaps by eliminating the necessity of sodium functioning for potassium as base.

(4) Addition of sodium, potassium and calcium favored calcium retention but too much potassium on low sodium is less favorable.

(5) We could not distinguish any difference between addition of Ca, K and Na and of Ca and Na alone on P retention. P retention has been shown to be increased if Ca level is raised (4).

(2) Alkali retentions of young rachitic rats when alkalized with varying amounts of sodium citrate.

The balances reported in this and the succeeding section were done on the same rats reported in the second paper of this series (2); consequently the methods and technique described there apply here also.

The control rats on the basal diet plus Ca lactate, but without any added alkali, were negative in Na, but gaining in K, Ca and P. When completely alkalized with sodium citrate, so that the ratio of total Na to K ingested was 5.9:1, Na and Ca balances were favored, while K and P were not affected. When only partially alkalized, so that the ratio of Na: K ingested was 1.3:1, the Na, K, Ca and P balances were all less favorable than with the Na citrate alone. It would appear that the increased alkalinity and the higher Na/K ration has a favorable tendency in salt balances. Data are given in Table II.

(3) Comparison of retentions obtained as in (2) but using a different basal diet.

The rats here reported are those shown in Table III in the preceding paper (2). This diet contained more calcium than given in Experiment 2, and its utilization is quite obviously favored where alkali was used. The increased retention of calcium in turn improves the phosphorus balances. But where the increased use of potassium has led to a greater potassium retention to meet the needs of the growing animal, the phosphorus balance continued improved while the calcium retention is materially lowered. With the exception of finding an increased retention of potassium, this experiment bears out the results of the others, in that a higher ratio of Na:K, within reason, appears to be more desirable.

SUMMARY.

1. Acidotic, depleted, mature and young rachitic rats have been treated with alkaline saline mixtures of sodium, potassium and calcium to study the more beneficial mixtures for retention of all bases.

2. Most favorable results require all the bases, but the ratios are not without an important bearing.

3. Assuming that the K, Ca, P and Mg requirements are met, the alkalization requires a considerable preponderance of sodium, our best results in this survey resulting from a mixture in which Na: K = 5.9:1. This is simply a suggestive value, indicating the nature of the proper balance. A ratio of Na to K of 33 to 1, as in Experiment 1, showed some tendencies to imbalance.

BIBLIOGRAPHY.

(1) V. V. Cole, J. H. Speer and F. W. Heyl, JOUR. A. PH. A., 18 (1929), 36.

(2) V. V. Cole, J. H. Speer and F. W. Heyl, Ibid., 18 (1929), 107.

(3) M. B. Richards, W. Godden and A. D. Husband, Biochem. J., 21 (1927), 971.

(4) F. W. Heyl and M. C. Hart, JOUR. A. PH. A., 17 (1928), 225.

RESEARCH LABORATORIES, THE UPJOHN COMPANY, KALAMAZOO, MICHIGAN.

PHYTOCHEMICAL NOTES.*⁺†

No. 101. THE SEEDS OF MONARDA PUNCTATA.

BY A. A. HARWOOD.

About two and three-quarter pounds of seeds were gathered at Lake Wisconsin and in the Pharmaceutical Garden. The heads were thrashed and the chaff removed with a fanning mill.

The moisture content, as determined by the xylene method¹ was found to be 3.6 p. c. (two determinations).

Ash content 2.6412 Gm. and 2.7580 Gm., respectively, when incinerated as directed² yielded the following amounts of

	Ι.	11.
Water soluble ash	0.0101 Gm. = 0.38 p. c.	0.0169 Gm. = 0.61 p. c.
Acid soluble ash	0.1816 Gm. = 6.87 p. c.	0.1836 Gm. = 6.66 p. c.
Acid insoluble ash	0.0081 Gm. = 0.3 p. c.	0.0076 Gm. = 0.2 p. c.
		······
	0,1998 Gm. 7.55 p. c.	0.2081 Gm. 7.47 p. c.

Extraction with Selective Solvents.—One hundred Gm. of seeds were finely pulverized and placed in a continuous extractor for extraction with petroleum ether, ether and alcohol. The extraction with hot alcohol, acetone and methyl alcohol was accomplished in a flask connected with a reflux condenser. The

¹ U. S. Dept. Agr., Circ. 134.

^{*} Scientific Section, A. PH. A., Portland meeting, 1928.

[†] From the laboratory of Edward Kremers.

² Nellie Wakeman, "Plant Chem. for Pharm. Students," page 15.